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1. Introduction 

Program Simple suite (Simple), is a package of programs allowing its user 

to qualitatively compute coupling elements of a phenomenon called “singlet fission” 

(SF) within the boundaries of  Simple theory as derived in the referenced 

articles.[1,2] The core of the theory though lies in Dirac’s (Fermi’s) golden rule.[3] It 

further expands on this by the use of semi-classical Marcus theory[4,5] to assess the 

SF rate. 

 The aim of this package is not to provide exact or quantitative data for one 

structure, for that is the purpose of higher order methods. Simple should give  

the user the ability to search through the whole 6D space of rotations and 

translations of a monomer to arrive to an optimal dimer structure, or to compare 

the known crystal structure to it. During its run, Simple also prints out other 

useful information such as the magnitude of Davydov splitting. 

The manual itself is split into three main parts. First of them is dedicated 

to the input file structure for Simple. It covers the ways of constructing it manually 

for small molecules from the output files generated by Weinhold’s NBO analysis 

(often embedded into Gaussian or ORCA QM programs) and explains its structure 

on real world example.[6–8] Because this process could end up being long and 

tiresome for larger molecules, the suite provides an interface that converts  

the output of the above mentioned analysis into the input file of Simple.  

The use of this tool is also covered in this section. 

The second part then describes the run of Simple after the successful 

making of the input file. It describes what parts of the program you should call  

to obtain the desired result, how to call them, and how to read and/or interpret  

the results. 

The last part describes the way of obtaining and installing the program and 

also includes contacts section should the user need help or have a bug  

report to file in. 
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2. Input File 

2.1 Structure of the Input File 

The structure of the input file is going to be shown on a model molecule 

of ethylene (Fig. 1). 

 

Figure 1. Structure of the model molecule, ethylene. 

The whole input file is going to look in the following way (Fig. 2). 

Figure 2. The whole input file structure for a dimer of ethylenes. 

Title : 

C2H4 dimer - 6-311G 

Processors : 44 

Method : 

sf-lj 1.0 

GeomA : 

 C    0.6630315    0.0000000    0.0000000 

 C   -0.6630315    0.0000000    0.0000000 

 H    1.2338880    0.9217687    0.0000000 

 H   -1.2338880   -0.9217687    0.0000000 

 H   -1.2338880    0.9217687    0.0000000 

 H    1.2338880   -0.9217687    0.0000000 

GeomB : 

 C    0.6630315    0.0000000    0.0000000 

 C   -0.6630315    0.0000000    0.0000000 

 H    1.2338880    0.9217687    0.0000000 

 H   -1.2338880   -0.9217687    0.0000000 

 H   -1.2338880    0.9217687    0.0000000 

 H    1.2338880   -0.9217687    0.0000000 

Const : 

T Z  2.0 

T Y  1.0 

T X  0.0 

R Z 90.0 

R Y  0.0 

R X  0.0 

Scan : 

NAO : 

  C 3 

P 3 0.0 0.0 0.2929d0 

20.96420000     0.04024870 

 4.80331000     0.23759400 

 1.45933000     0.81585400 

P 1 0.0 0.0 0.5275d0 

 0.48345600     1.00000000 

P 1 0.0 0.0 0.4343d0 

 0.14558500     1.00000000 

MOs : 

 hA 

 1  0.5 

 2  0.5 

 lA 

 1  0.5 

 2 -0.5 

 hB 

 1  0.5 

 2  0.5 

 lB 

 1  0.5 

 2 -0.5 

dE(CT) : 1.0 

lambda : 2.0 
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Figure 3. Title, method, parallelization, and geometry part of the input. 

If we start the dissection of the input file (Fig. 3), it begins with Title : 

declaration, under* which you can specify the title of your calculation.  

Under the title “C2H4 dimer - 6-311G”, a line starts with # that is used to denote 

a commented line. Line starting with this symbol is not read by Simple. 

Under this section you may find the Processors : with a number  

next to this keyword. Simple has been parallelized using OpenMP directives and 

as tested, it scales well with up-to 48 threads. 

Under the next line that says Method :, one specifies the goal of the program 

is supposed to achieve. There are three to choose from: 

 

a. sf-lj 1.0 

This method tells the program to calculate coupling elements of 

singlet fission (T
 2

) according to the theory by Havlas and Michl.  

If the program searches through or optimizes in predefined 6D space, 

it maximizes T
 2

. To do so, it employs a search function defined 

in Eq. 1, in which α is the multiplicative factor defined in the input 

file. This equation by itself does not bear any physical meaning. 

Default and recommended value is 1.0. 

Title : 

C2H4 dimer - 6-311G 

#Le comment 

Processors : 44 

Method : 

sf-lj 1.0 

#rate 

#LJ-rep 

#omit 

GeomA : 

 C    0.6630315    0.0000000    0.0000000 

 C   -0.6630315    0.0000000    0.0000000 

 H    1.2338880    0.9217687    0.0000000 

 H   -1.2338880   -0.9217687    0.0000000 

 H   -1.2338880    0.9217687    0.0000000 

 H    1.2338880   -0.9217687    0.0000000 

GeomB : 

 C    0.6630315    0.0000000    0.0000000 

 C   -0.6630315    0.0000000    0.0000000 

 H    1.2338880    0.9217687    0.0000000 

 H   -1.2338880   -0.9217687    0.0000000 

 H   -1.2338880    0.9217687    0.0000000 

 H    1.2338880   -0.9217687    0.0000000 

Const : 

T Z -3.5 

T Y -0.5 

T X -0.5 

R Z 40.0 

R Y 10.0 

R X  0.0 

Scan : 

NAO : 

  C 3 

P 3 0.0 0.0 0.2929d0 

20.96420000     0.04024870 

 4.80331000     0.23759400 

 1.45933000     0.81585400 

P 1 0.0 0.0 0.5275d0 

 0.48345600     1.00000000 

P 1 0.0 0.0 0.4343d0 

 0.14558500     1.00000000 

MOs : 

 hA 

 1  0.5 

 2  0.5 

 lA 

 1  0.5 

 2 -0.5 

 hB 

 1  0.5 

 2  0.5 

 lB 

 1  0.5 

 2 -0.5 

ECA : 1.0 

EAC : 1.0 

lambda : 2.0 

dE(CT) : 1.0 

 

*The way Simple handles input files is somewhat rigid. Do pay attention to the prepositions in 

italics. 
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F  = αE REP − T
 2

 (1) 

 

The repulsion potential E REP  is a smooth version of hard-sphere 

potential defined in Eq. 2, in which Δx is the distance  

between the atoms of the two examined molecules and ∑r vdW  is 

the sum of the van der Waals radii of both the atoms. This repulsion 

effectively prevents the molecule entwining. 

 

E REP  = 10
106 ∙ exp [−244.1 ∙ (

△x

∑r vdW
)

2

] (2) 

 

It includes calculation of Davydov splitting, biexciton binding energy 

and addition to the endoergicity of the process. 

b. rate 

This method tells the program to calculate rate of singlet fission (k) 

according to the theory by Marcus. If the program searches  

through predefined 6D space, it maximizes kSF. To do so, it employs 

a search function defined in Eq. 3, which, as its predecessor in Eq. 2, 

bears no physical meaning. 

 

F  = E REP −  ℏkSF (3) 

 

c. LJ-rep 

This method tells the program to calculate only the repulsion 

potential E REP  as defined in Eq. 2. If the program searches 

through predefined 6D space, it maximizes its magnitude. 

d. omit 

This is an optional keyword. It tells the program to omit structures 

with too large repulsion. This will speed up scanning considerably. 
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Next section with xyz coordinates of the monomers is marked by GeomA : 

and GeomB :. In this example, both geometries are identical and are at the very 

same place. This is the recommended start point of the calculation, yet one can 

easily choose to predefine a structure of a dimer. In the latter case, it is needed 

to define the orbitals for each monomer separately. 

 

Figure 4. Translations and rotations in Simple, one dimer. 

Figure 5. Translations and rotations in Simple, user-defined scan grid. 

Figure 6. Translations and rotations in Simple, pre-defined scan grid. 

Next section (Figs. 4, 5, and 6), defines the way Simple handles molecular 

geometries. Fig. 4 shows a possibility how to define a single translation (T) and 

GeomB : 

 C    0.6630315    0.0000000    0.0000000 

 C   -0.6630315    0.0000000    0.0000000 

 H    1.2338880    0.9217687    0.0000000 

 H   -1.2338880   -0.9217687    0.0000000 

 H   -1.2338880    0.9217687    0.0000000 

 H    1.2338880   -0.9217687    0.0000000 

Scan : 

T Z  2.0 

T Y  1.0 

T X  0.0 

R Z 90.0 

R Y  0.0 

R X  0.0 
Scan : 

NAO : 

  C 3 

P 3 0.0 0.0 0.2929d0 

20.96420000     0.04024870 

 4.80331000     0.23759400 

 1.45933000     0.81585400 

P 1 0.0 0.0 0.5275d0 

 0.48345600     1.00000000 

P 1 0.0 0.0 0.4343d0 

 0.14558500     1.00000000 

MOs : 

 hA 

 1  0.5 

 2  0.5 

 lA 

 1  0.5 

 2 -0.5 

 hB 

 1  0.5 

 2  0.5 

 lB 

 1  0.5 

 2 -0.5 

ECA : 1.0 

EAC : 1.0 

lambda : 2.0 

dE(CT) : 1.0 

 

GeomB : 

 C    0.6630315    0.0000000    0.0000000 

 C   -0.6630315    0.0000000    0.0000000 

 H    1.2338880    0.9217687    0.0000000 

 H   -1.2338880   -0.9217687    0.0000000 

 H   -1.2338880    0.9217687    0.0000000 

 H    1.2338880   -0.9217687    0.0000000 

Scan : 

T Z -4.0  16  0.5 

T Y -4.0  16  0.5 

T X -4.0  16  0.5 

R Z  0.0  18 10.0   

R Y  0.0  18 10.0 

R X  0.0  18 10.0 
Scan : 

NAO : 

  C 3 

P 3 0.0 0.0 0.2929d0 

20.96420000     0.04024870 

 4.80331000     0.23759400 

 1.45933000     0.81585400 

P 1 0.0 0.0 0.5275d0 

 0.48345600     1.00000000 

P 1 0.0 0.0 0.4343d0 

 0.14558500     1.00000000 

MOs : 

 hA 

 1  0.5 

 2  0.5 

 lA 

 1  0.5 

 2 -0.5 

 hB 

 1  0.5 

 2  0.5 

 lB 

 1  0.5 

 2 -0.5 

ECA : 1.0 

EAC : 1.0 

lambda : 2.0 

dE(CT) : 1.0 

 

GeomB : 

 C    0.6630315    0.0000000    0.0000000 

 C   -0.6630315    0.0000000    0.0000000 

 H    1.2338880    0.9217687    0.0000000 

 H   -1.2338880   -0.9217687    0.0000000 

 H   -1.2338880    0.9217687    0.0000000 

 H    1.2338880   -0.9217687    0.0000000 

Scan : 

coarse 

#medium 

#fine 

 
Scan : 

NAO : 

  C 3 

P 3 0.0 0.0 0.2929d0 

20.96420000     0.04024870 

 4.80331000     0.23759400 

 1.45933000     0.81585400 

P 1 0.0 0.0 0.5275d0 

 0.48345600     1.00000000 

P 1 0.0 0.0 0.4343d0 

 0.14558500     1.00000000 

MOs : 

 hA 

 1  0.5 

 2  0.5 
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rotation (R) vector to form a dimer under Scan : keyword. Rotations are defined 

as counterclockwise, except for the x-axis rotation, which clockwise. The outcome 

of this is depicted in Fig. 7, where the blue and red structure is the monomer A 

and B, respectively. 

 

Figure 7. The effects of translations and rotations as defined in Fig. 4, blue is the monomer A and 

red is the monomer B (translated and rotated one). All rotations are defined as counterclockwise. 

Fig. 5 shows the possibility of the user to define his/her own grid where 

the program searches for the maximum value of the sought quantity defined 

in the Method : section. Under Scan : line, one defines translations and rotations  

in all 6 dimensions – the first two strings are similar to the previous case section,  

the next three numbers stand for: the starting point (−4.0), the number of steps 

(16), the step size in Ångströms (0.5). Beware of the following features. 

 

a. The program searches for the maximum value by comparing  

the adjacent points. 

b. The scan in the example will take some time – in the example: 

163 ⨉ 183 ≐ 24M points. On the other hand, one structure is completed 

usually within milliseconds of CPU time or even less. 

 

Fig. 6 shows the easiest and recommended way of searching the 6D space 

– predefined grids for scanning. There are three grids to choose from: fine, 

medium, and coarse. The last grid should be used for larger molecules. 

The test on a molecule with roughly 40 atoms (108 NAOs) showed coarse 

grid (420M points) to complete in a little less than a week using 40 threads on two 

Intel Xeon® E7-4850 v2 processors embedded in a single motherboard running at 

nominal 2.5 GHz core clock speed. Finer grids may be used for smaller molecules,  
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for they provide a higher level of certainty that no sharp, but narrow minima of F 

will be skipped. 

Figure 8. AO and NAO section – defined for carbon as an element, basis set: 6-311G. 

Figure 9. AO and NAO definition section – defined per atom, basis set: 6-311G. 

Section following the geometry is the basis set section. Simple expands 

orbitals from the predefined atomic orbital (AO) basis into natural atomic 

orbitals (NAOs). This basis set of NAOs is further expanded into molecular orbitals 

(MOs) that are normalized and orthogonalized by an intrinsic subroutine 

thereafter. All of the expansion coefficients need to be provided, e.g. from the NBO 

analysis. 

Scan : 

coarse 

#medium 

#fine 

NAO : 

  C 3 

P 3 0.0 0.0 0.2929d0 

20.96420000     0.04024870 

 4.80331000     0.23759400 

 1.45933000     0.81585400 

P 1 0.0 0.0 0.5275d0 

 0.48345600     1.00000000 

P 1 0.0 0.0 0.4343d0 

 0.14558500     1.00000000 

MOs : 
 hA 

 1  0.5 

 2  0.5 

 lA 

 1  0.5 

 2 -0.5 

 hB 

 1  0.5 

 2  0.5 

 lB 

 1  0.5 

 2 -0.5 

ECA : 1.0 

EAC : 1.0 

lambda : 2.0 

dE(CT) : 1.0 

 

NAO : 

1 A 3 

P 3 0.0 0.0 0.2929d0 

20.96420000     0.04024870 

 4.80331000     0.23759400 

 1.45933000     0.81585400 

P 1 0.0 0.0 0.5275d0 

 0.48345600     1.00000000 

P 1 0.0 0.0 0.4343d0 

 0.14558500     1.00000000 

2 A 3 

P 3 0.0 0.0 0.2929d0 

20.96420000     0.04024870 

 4.80331000     0.23759400 

 1.45933000     0.81585400 

P 1 0.0 0.0 0.5275d0 

 0.48345600     1.00000000 

P 1 0.0 0.0 0.4343d0 

 0.14558500     1.00000000 

1 B 3 

P 3 0.0 0.0 0.2929d0 

20.96420000     0.04024870 

 4.80331000     0.23759400 

 1.45933000     0.81585400 

P 1 0.0 0.0 0.5275d0 

 0.48345600     1.00000000 

P 1 0.0 0.0 0.4343d0 

 0.14558500     1.00000000 

2 B 3 

P 3 0.0 0.0 0.2929d0 

20.96420000     0.04024870 

 4.80331000     0.23759400 

 1.45933000     0.81585400 

P 1 0.0 0.0 0.5275d0 

 0.48345600     1.00000000 

P 1 0.0 0.0 0.4343d0 

 0.14558500     1.00000000 

 

MOs : 
 hA 

 1  0.5 

 2  0.5 

 lA 

 1  0.5 

 2 -0.5 

 hB 

 1  0.5 

 2  0.5 

 lB 

 1  0.5 
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There are two possibilities how to construct the NAO part. The easiest one 

is shown in Fig. 8. User defines the AO and NAO basis set only per element.** 

The first line under NAO : contains 1 string and 1 number, C and 3.  

The string defines the element by the symbol as in the periodic table of elements. 

The number defines the amount of basis functions and because it was opted to use 

the 6-311G basis set, this basis AO basis set is constructed using only 3 P-orbital 

functions. 

The use of specifically P-orbital functions is denoted in the first character  

of the next line, P. The number following it, 3, is the number of contracted gaussian 

functions used to define it. The three following floating-point numbers,  

0.0 0.0 0.2929d0, are the NAO expansion coefficients in the AO basis in x-, y-,  

and z- direction, respectively, obtained from the NBO analysis. Do observe 

that only z-_direction is used for the further construction of HOMO and LUMO 

(Figs. 8 and 10), the P-orbitals in the other two directions have negligible 

contribution and can be safely neglected. 

 

Figure 10. Side-view of the model ethylene molecule with the depiction of the used P-orbitals in 

the further construction of HOMO and LUMO as defined by the input file. 

The AO basis are the following three lines separated into two columns. 

This copies the way AO bases are defined in Turbomole format in Basis Set 

Exchange Library (https://bse.pnl.gov/bse/portal) so they can be simply readily 

copied. 

The latter, more complex definition of NAO basis (Fig. 9) is useful for larger 

molecules where the atoms are not chemically identical, which is not the case 

of ethylene. It follows identical rules, only the header of each NAO changes. 

Instead of one string and a number (C 3 in Fig. 8), one number before the string 

and one after is used – 1 A 3. The first number defines the atom number now (first 

atom defined by the geometry section in the example), the string defines  

the monomer (monomer A), and the last number is again the number of contracted 

gaussian functions. The rest of this section is identical. 

**Note that the input file omits hydrogen atoms in the basis set construction. It is mostly 

unneeded to include them in the construction of neither HOMO, nor LUMO. 

 

https://bse.pnl.gov/bse/portal
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Figure 11. The definition of the ethylene MOs in the previously defined NAO basis. 

The next step is to define the MOs in the NAO basis. That is carried out 

in the MOs : section of the input (Fig. 11). The first line under the header reads hA. 

That stands for the HOMO (h) of monomer A (A). The lines under specify  

the MO expansion coefficients in the NAO basis obtained from the NBO analysis. 

They are ordered in two columns, second column being the expansion coefficient 

itself. The first column specifies the number of the NAO (not of the atom) that is 

expanded by the coefficient in the second column. This is repeated  

for LUMO A (lA), HOMO B (hB), and LUMO B (lB). 

 

Figure 12. HOMO (left) and LUMO (right) as constructed by Simple from the example input file, 

visualized by MOLDEN.[9]  

Figure 13. Last part of the input file, CT state energy and reorganization energy for Marcus 

theory. 

The last two steps are to define the energies of charge transfer (CT) states 

and reorganization energy for Marcus theory approach. 

MOs : 

 hA 

 1  0.5 

 2  0.5 

 lA 

 1  0.5 

 2 -0.5 

 hB 

 1  0.5 

 2  0.5 

 lB 

 1  0.5 

 2 -0.5 
ECA : 1.0 

EAC : 1.0 

lambda : 2.0 

dE(CT) : 1.0 

 

lB 

 1  0.5 

 2 -0.5 

dE(CT) : 1000 meV 

EAC : 1.00 

ECA : 1.00 

lambda : 1.5 
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The energy difference between S1 (T1) and CT state is written 

next to dE(CT) : keyword. It can be either left as default 1 eV (Fig. 13) –  

the rationale behind this particular number is described in the referenced article,[1] 

or it can be calculated. The latter option might not be advisable because the crystal 

CT state energy is going to possibly differ greatly from the calculated dimer CT 

state energy. Should one want to define two different energies for a case 

where E(AC) ≠ E(CA), e.g. when monomer A and B are different species, use 

EAC : and ECA : keywords, respectively. 

The reorganization energy (λ) can be, for the sake of the example, crudely 

assessed from a simple formula in Eq. (4), where E (A,B) stands for the energy  

of a state A in the geometry of a state B. Both energies can be put in in either eV 

(eV), meV (meV), or kcal/mol (kcal), the first being the default and therefore not 

needing any specification of the units (lambda : 1.5 is therefore in eV). 

 

λ = E (S1,T1) + E (S0,T1) −  E (S1,S1) −  E (S0,S0) (4) 

 

2.2 Automatic Generation of Simple Input 

The generation of an input file for a larger and possibly non-planar molecule 

could prove challenging and frankly tiresome. For this reason, an interface 

between NBO analysis and Simple was written and is distributed under the name 

Simput, within the folder Tools. Fig. 15 shows the input file for this program. 

In order to run, Simput needs the output files of NBO analysis of version 5.9 

or higher run within Gaussian or ORCA with $NBO CMO AONAO=W NAOMO=W PLOT 

$end appended to the calculation input. This results in more than one output file 

excluding the standard output or the log file of the calculation. The files of interest 

are FILE.31 through FILE.41, and FILE.46 and FILE.49. These should be kept  

in a separate folder (i.e. Bu/orbs/ as in Fig. 14).  
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It is advised to keep the molecule oriented in a way that the planar part  

of it, if present, is in the xy-plane (Figs. 7 and 10). This reduces the number of 

orbitals needed to define HOMO and LUMO speeding up the calculation 

dramatically. 

Figure 14. Simput input file structure. 

The input file (Fig. 14) starts the definition of MOs. The number  

next to HOMO A: defines that the 109th orbital in the NBO analysis is the sought 

HOMO of the monomer A. The same is then defined for LUMO and MOs  

of monomer B. 

A string next to DIR A: keyword specifies the folder,  

where the above-described output files of the calculation are kept. 

A string next to Basis Set: keyword specifies the file that is used to keep 

the basis set information. This file is in the Turbomole format, which is shown 

in Fig. 15. As of now, the program supports only two basis sets – Pople’s 6-311G 

(for B, C, N, O, F, S), and Dunning et al. cc-pVDZ (for H, B, C, N, O, F). 

Planar: keyword specifies whether Simput should (yes) or should not (no) 

trim the P-orbitals in x and y axes. Does not work with cc-pVDZ basis set. (See 

below for a similar approach.) 

HOMO A:109 

LUMO A:110 

HOMO B:109 

LUMO B:110 

DIR A:Bu/orbs/ 

DIR B:Bu/orbs/ 

Basis Set:6-311G.basis 

Title:TDPP 

Method:rate 

Grid: 

T X: 9.067430 

T Y: 0.437786 

T Z: 5.127527 

R X: 181.216595 

R Y: 364.563490 

R Z: 359.951523 

EAC:1.0 

ECA:1.0 

Planar:no 

Processors:48 

Cutoff value:0.05 

dE(CT): 1.0 

Reduce: 1.0 

Lambda: 0.5 

omit 
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Similarly to that, Cutoff value: keyword specifies the lowest possible MO 

expansion coefficient that should be still used in the input. Modest use  

of this feature can cut the computational time drastically, while forfeiting 

negligible accuracy. The value of 0.05 proved to be useful for the scans of the 6D 

space.  

For optimizations it is recommended not to use this feature (let it be set to 0.0).  

This keyword works similarly to Planar: for cc-pVDZ basis set  

(or for the future basis sets with diffuse d-orbitals). If the molecule is properly 

oriented (the planar part is in the xy_-plane), some D- and P- orbitals “pointing”  

in direction that is unfavorable for mixing into HOMO or LUMO will therefore 

have insignificant contribution to the construction of these MOs and can be safely 

neglected. 

The rest of the keywords work similarly to the keywords in Simple itself 

as defined in the previous subchapter. Should there be a need to use one of the 

predefined grids, this is specified after Grid: keyword. 

The program is called in the following way, 

 

> Simput Simput_input [Simple_input] 

 

where Simput_input is the name of the Simput input file. [Simple_input] is  

the optional name of the formed Simple input file, should it not be specified 

Simple.inp is used. If the output file bears the same name as an already existing 

file, the old one is overwritten. 

An important note: The program itself, as it is in its programming infancy, does 

not handle some errors in reading and does not stop when it encounters one. The 

input building takes no longer than 10 seconds. Should nothing happen after this 

short period of time, stop the program and recheck the NBO output files, basis set 

definition, and Simput input file. 

This feature is to be resolved in the future iterations of Simple. 
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Figure 15. Turbomole formatted basis set definition of carbon as taken from ESML Basis Set 

Exchange Library (https://bse.pnl.gov/bse/portal). 

  

$basis 

* 

c   6-311G 

* 

    6  s 

   4563.2400000              0.00196665        

    682.0240000              0.0152306         

    154.9730000              0.0761269         

     44.4553000              0.2608010         

     13.0290000              0.6164620         

      1.8277300              0.2210060         

    3  s 

     20.9642000              0.1146600         

      4.8033100              0.9199990         

      1.4593300             -0.00303068        

    1  s 

      0.4834560              1.0000000         

    1  s 

      0.1455850              1.0000000         

    3  p 

     20.9642000              0.0402487         

      4.8033100              0.2375940         

      1.4593300              0.8158540         

    1  p 

      0.4834560              1.0000000         

    1  p 

      0.1455850              1.0000000         

* 

$end 

https://bse.pnl.gov/bse/portal
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3. Running Simple 

With the input file ready, the run of the program suite is just a few 

keystrokes away. The user only needs to know what the purpose of his/her 

calculation is. 

3.1 Single Point Calculations and Scans – Simple 

These calculations are handled by program Simple and/or SimplePar. The latter is 

the OpenMP parallelized version of the former and it is recommended to be used 

when performing scans. 

Single point calculations are to be performed by Simple as it writes all 

the important and additional information about the dimer at hand. 

Both of the programs are called in the following way, 

 

> Simple inputfile.inp 

> SimplePar inputfile_par.inp 

 

where inputfile.inp and inputfile_par.inp are the names of the input files  

for Simple and parallelized version of it, respectively. 

 

a. Scan Results 

The scan procedure if ran with user’s own grid or with the predefined one 

results in one file next to the standard output – Minima3 (Fig. 16). 

This file contains all the found points possibly close to minima ordered  

from the lowest value of F (points with the maximum of T 2 or k) to the highest 

(points usually governed by the repulsion and of little concern to the user).  

The usual amount of points found by the scan is around 20,000,  

but it can exceed this number. As stated in the parentheses, not all of them are of 

interest to the user. 

Figure 16. First five structures of the model ethylene molecule as calculated and written by 

SimplePar into Minima3, as specified in Fig. 2, grid: coarse. 

              F            T Z          T Y          T X          R Z          R Y          R X 

    1  -0.6380486E-01    3.7500000    0.0000000   -0.7500000    0.0000000  160.0000000    0.0000000 

    2  -0.6352576E-01    3.7500000   -0.7500000    0.0000000   20.0000000   40.0000000   20.0000000 

    3  -0.6282679E-01    3.7500000   -0.7500000    0.0000000  100.0000000  340.0000000    0.0000000 

    4  -0.5587001E-01    3.0000000   -2.2500000    0.0000000   80.0000000    0.0000000    0.0000000 

    5  -0.3113526E-01    3.0000000   -2.2500000   -0.7500000   20.0000000  160.0000000  140.0000000 
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b. Single Point Calculation Results 

The single point calculation results in two files and a standard output  

that is recommended to be diverted into a file (Fig. 17). The two files are MOAB-

OrthNorm.molden and Molecule.json. 

The first file is formatted to be readily readable by MOLDEN molecule 

viewer and it includes information on the MOs, which can be viewed by the same 

tool as well. This can prove helpful should the user be unsure whether the orbitals 

are constructed in the desired way. The .json file is a file containing formatted 

results of the calculation so they can be easily readable by user-created program. 

Figure 17. Results section of the standard output of Simple single point calculation. 

      PERTURBATION THEORY - NO SINGLET MIXING 

      TA=   -1.2205709E-03 eV     TA^2=    1.4897933E-06 eV^2       LJ(Rep)=    7.7254042E-09 eV^2    Mixed LJ-

TA^2=   -1.4820679E-06 eV^2 

      TB=    1.1474257E-03 eV     TB^2=    1.3165857E-06 eV^2       LJ(Rep)=    7.7254042E-09 eV^2    Mixed LJ-

TB^2=   -1.3088603E-06 eV^2 

      3x3 and 3x3 DIAGONALIZATION - NO SINGLET MIXING 

      TA=   -1.2149345E-03 eV     TA^2=    1.4760657E-06 eV^2 

      TB=   -1.1421532E-03 eV     TB^2=    1.3045140E-06 eV^2 

      4x4 and 3x3 DIAGONALIZATION - MIXING OF S1S0 and S0S1 

      T(S+)= 5.3463654E-05 eV     T(S+)^2= 2.8583623E-09 eV^2 

      T(S-)=-1.6107495E-03 eV     T(S-)^2= 2.5945140E-06 eV^2 

      MARCUS THEORY 

      k=  8.0967617E+08 s-1    Mixed LJ-k= -8.0967617E+08 s-1 

  

      DETAILED RESULTS 

   Excitonic: 

 

      (hAlA|hBlB)         =      36.096158 meV 

 

      (hAhA|lBlB)         =   -1893.627068 meV 

 

   Mixing LE states in |S+> 

      Mixing(rad)         =       0.785398 

      Mixing(deg)         =      44.999998 

 

   Mixing LE states in |S-> 

      Mixing(rad)         =       0.785398 

      Mixing(deg)         =      45.000002 

 

   Davydov Splitting: 

      dE(S- - S+)         =    -144.600383 meV 

 

      T(S+)^2             =       2.858362E-03 meV^2 

      Mixed LJ-Trp(S+)^2  =       4.867042E-03 meV^2 

      dE(TT - S+)         =     -68.731237 meV 

      S+  phase           =      + (in phase) 

 

      T(S-)^2             =       2.594514E+00 meV^2 

      Mixed LJ-Trp(S-)^2  =      -2.586789E+00 meV^2 

      dE(TT - S-)         =      75.869145 meV 

      S-  phase           =      - (out of phase) 

  

 

   Biexciton Binding Energy: 

      dE(T1T1 - TT)       =       0.605625 meV 

 

   Endoergicity: 

      dE(process)         =      75.958197 meV 

 

   Boltzmann weighting: 

      w(S+)               =       0.003572 

      w(S-)               =       0.996428 

 

   Marcus theory: 

      lambda(reorg.)      =       0.300000 eV 

      dE(internal)        =       0.000000 eV 

      Rate const. k       =       8.096762E+08 s^-1 

      Lifetime tau        =    1235.062 ps 

  

      CSV: 

  -1.2205709E-03;   1.1474257E-03;  -1.2149345E-03;  -1.1421532E-03;   5.3463654E-05;  -1.6107495E-03;   

8.0967617E+08;   7.2192316E-02;  -6.8731237E-02;   7.5869145E-02;  -1.4460038E-01;   6.0562466E-04;   

7.5958197E-02  

Program Simple finished 

Elapsed CPU time:   0 days   0 hours   0 minutes   0.020 seconds
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The first part of the standard output of Simple shows the steps  

of the calculation, the user can find warnings, geometry after transformation, 

and matrices and eigenvectors used to calculate the coupling elements through 

diagonalization. 

The results themselves are printed out as in Fig. 17. They start  

with PERTURBATION THEORY - NO SINGLET MIXING headline and the first line 

(starting with TA=) shows the results of the perturbation theory approach,  

where T stands for the coupling element T of SF and A stands for the initial 

excitation of monomer A – therefore the initial state is constructed from S1S0  

and charge transfer states. No mixing of S0S1 state is introduced. B stands  

for the opposite way of constructing of the initial state – S0S1 and charge transfer 

states are used. The final state is constituted of T1T1 and charge transfer states. 

The following paragraph 3x3 and 3x3 DIAGONALIZATION - NO SINGLET 

MIXING shows the results of a similar calculation with the same initial states, 

only performed by diagonalization subroutine, hence not by the analytical formula. 

The last paragraph of this sub-block (4x4 and 3x3 DIAGONALIZATION - 

MIXING OF S1S0 and S0S1) introduces the mixing of locally excited states S1S0 

and S0S1. S+ and S− are the states formed by a linear combination of initial states 

– S1S0, S0S1, D+D−, and D−D+, where the +/− is the sign between the excitonic state 

coefficients within the base state basis vector. Coupling elements between these 

initial states and the final state are denoted T(S+) and T(S-).  

The next result is the V coupling element between S1S0 and S0S1 calculated 

within Simple theory as the 2-electron integral denoted (hAlA|hBlB).  

The following part defines the mixing angle between S1S0 and S0S1 states.  

The section under this is calculated using diagonalization subroutine  

and it informs the user of the energetics of the phenomenon – Davydov Splitting: 

(or more precisely dE(S- - S+), the energy difference between S+ and S− states), 

Biexciton Binding Energy:, and Endoergicity:. 

Skipping the two other parts, the user arrives to the final part of new results 

giving him/her the information about the kinetics of SF, including lifetime of triplet 

formation. 
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The CSV: headline introduces the final, but condensed section of results.  

It is written in the format of “Comma Separated Values” that is recognized  

by spreadsheet editing programs – such as Microsoft Excel ®. This line can be 

directly copied to a spreadsheet or more presumably if the user runs a long batch 

of points it can be grafted into a larger .CSV file by a script. All the points can  

then be viewed at once as the data are ordered in the following way: 

 

T A (pert.); T B(pert.); T A (diag.); T B(diag.); T (S+); T (S−); k (Marcus eq.); 

 2(hAlA|hBlB); ΔE (TT − S+); ΔE (TT − S−); ΔE (Davydov spl.); ΔE (Biexciton binding 

energy); ΔE (Overall endoergicity) 

 

The last two lines inform of the successful completion of the calculation  

and the elapsed CPU time – Fig. 17 shows the time needed for a single point 

calculation of ethylene on a single thread of Intel Xeon® E7-4850 v2 processor. 
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3.2 Optimizations of Dimer Structures – SimOpt  

These calculations are handled by program SimOpt and AutoOpt. The latter 

being parallelized using OpenMP and intended to be used for larger batches  

of points – e.g. for the results of Simple scan. It uses Davidon-Fletcher-Powell 

method to find the minimum of F. 

The programs are used to optimize the “crude” minima found by setting up 

a simple grid and are called in the following way, 

 

> SimOpt [optional flag] inputfile.inp 

> AutoOpt inputfile.inp structure_list [number of threads] 

 

where inputfile.inp is the input file used for Simple calculations, 

structure_list is a file containing the points to be optimized and is formatted  

as Minima3 file (Fig. 16), and [number of threads] is an option to specify  

the amount of threads to be used (note: Processors : specification within  

the input file is omitted here, [number of threads] is used instead).  

Another option that is SimOpt specific is the use of flags [optional flag].  
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a. Single Optimization Run Results 

The optimization procedure results in a single MOLDEN_-readable file 

(inputfile.molden) next to the standard output, for which it is recommended to 

be diverted into a file. The MOLDEN_-readable output can be suppressed by the 

use of -nm flag. 

The final section of standard SimOpt output that differs from Simple 

standard output is shown in Fig. 18. 

Figure 18. Standard output of SimOpt, results part of the optimization. 

This section contains the information on the initial geometry translation 

and rotation vector (under Initial structure:). Under this, each step  

of the optimization is printed out. Next to the search function value (F)  

and translation and rotation vector (geom=), user finds the value of the norm  

of the gradient (gNorm=) and the value of the repulsion potential. Next to it,  

the user finds T or F (True or False) flags that tell whether some of the criteria 

were met. Two criteria of reaching the optimal point are employed and are denoted 

in the headline Convergence: geom grad.  

To satisfy the geom (geometry) criterion it is needed for the succeeding points 

not to differ in geometry more than a set margin. The satisfaction  

of the grad (norm of the gradient) criterion comes from the need of the finding  

of the minimum of the search function F. For such cases the norm of the gradient 

needs to be equal to zero. Therefore, if the norm gets within a set margin close 

to zero, the criterion is satisfied. 

Initial structure: 

R X     180.000000 

R Y     180.000000 

R Z     180.000000 

T X      -1.750000 

T Y      -4.750000 

T Z       4.250000 

 

          ==================== OPTIMIZATION ==================                                                 Convergence: geom 

grad 

  0  F= -4.4970570E-07  geom=  180.000000  180.000000  180.000000   -1.750000   -4.750000    4.250000          ---------------------

- 

  1  F= -1.0201295E-06  geom=  181.065190  177.961497  176.974956   -1.951956   -4.411287    4.144960  gNorm=  4.153925E-06   F    F 

  2  F= -1.0377620E-06  geom=  181.283707  177.399811  176.231759   -1.980170   -4.356306    4.141029  gNorm=  1.816179E-10   T    T 

     ---- Final Cycle ---- 

  3  F= -1.0377620E-06  geom=  181.283709  177.399793  176.231739   -1.980171   -4.356305    4.141029  gNorm=  1.779853E-12   T    T 

CONVERGED in    3  cycles 

 

Optimized structure: 

R X     181.283709 

R Y     177.399793 

R Z     176.231739 

T X      -1.980171 

T Y      -4.356305 

T Z       4.141029 

 

k=  1.0949268E-06  E-Rep=  5.7164768E-08  mix*Rep-k= -1.0377620E-06  k(s^-1)=  1.6634867E+09 

 

Program SimOpt finished. 

Elapsed CPU time:   0 days   0 hours   6 minutes  19.356 seconds 
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After the optimization is done, SimOpt prints out the number of steps it took 

to do so, optimized geometry translation and rotation vector (under Optimized 

structure:), and the values of search function, gradient and its norm. 

The final section once again informs of the successful completion  

of the calculation and the amount of CPU time needed for it. 

b. Batch Optimization Runs 

The batch optimization using AutoOpt results in three files next to the standard 

output – OptResults, OptResultsSorted, and OptResultsReduced. The standard 

output may be disregarded by the user, for it only states the currently calculated 

point. 

The following three files are the results of the optimization, first 

(OptResults) being all the results without apparent sorting, the second is sorted 

according to F (OptResultsSorted), and the last (OptResultsReduced) has 

identical/symmetrical results deleted (Fig. 19). 

Figure 19. First five structures of the model ethylene molecule as optimized and written by 

AutoOpt into OptResultsReduced, input files as specified in Fig. 2 and structures input 

Minima3 taken from the scan calculation with coarse grid. 

  

              F            T Z          T Y          T X          R Z          R Y          R X 

    1  -0.1734330E+00   -3.5056273    0.0000000   -0.6529431    0.0000000   11.4077840    0.0000000 

    2  -0.1591969E+00   -3.5403081   -0.6544088    0.0000000   89.9999972   14.4285549    0.0000002 

    3  -0.1971021E-01   -3.3849260   -2.0334458    0.0000000    0.0000000   90.0000000   90.0000000 

    4  -0.2114531E-02   -4.0665539   -0.0000001    0.0000000   90.0000911   89.9999883   89.9999085 

    5  -0.8242650E-03   -3.9696650    0.0000000   -1.7140479   90.0000000   90.0000000   90.0000000 
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3.3 Tools for Geometry Extraction – Merkur and Inertia 

Excluding Simput described in chapter 2, Simple comes bundled with two 

additional tools – Merkur, a tool that is used to extract dimer structures  

from an .xyz file containing a crystal structure, and Inertia, a tool that converts 

.xyz file of a dimer to translation and rotation vectors used in Simple input files 

(Fig. 4). Both of them can be found in the Tools folder together with Simput. 

This also cuts down the time needed for NBO analysis, for it allows the user 

to only do this calculation once and let Simple rotate and translate the orbitals  

to the desired location of the monomer. 

 

a. Merkur – Extraction Tool 

The use of Merkur is simple, it only needs a suitable .xyz file containing the desired 

crystal structure to dissect. 

The program is then called in the following way, 

 

> Merkur crystal.xyz logfile.log 

 

where crystal.xyz is the .xyz file containing the data on the crystal and 

logfile.log is the file that is to contain the resulting xyz-coordinates  

of the monomers. 

The standard output also prints out the number of atoms and molecules  

in the crystal.xyz, the center of molecules, as well as the distance matrix  

of the molecules. This can be used to cut down the needed number of dimers to be 

calculated by setting up a perimeter around the first molecule. The first molecule 

is the molecule set into the center of the dissected crystal. 

b. Inertia – A Way of Obtaining T and R 

Inertia is used to convert the .xyz format to the format used by Simple 

 – the vector of translation and rotation of one of the monomers (Figs. 4 and 7).  

It needs two .xyz files as an input, the monomer A and the monomer B, which could 

be for example extracted from the results of Merkur tool. 
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The program is called in the following way, 

 

> Inertia MolA.xyz MolB.xyz 

 

where MolA.xyz and MolB.xyz are the .xyz files defining the geometry of the initial 

(A) and oriented (B) molecule, respectively. 

 The results of the program are 5 files, where one is a premade Simple input 

file SF.inp, which contains only geometry related info, and the rest are MOLDEN 

files tracking the progress of Inertia. User can compare the result of the translation 

and rotation with the original .xyz file by opening molden1.dat (xyz) and 

molden4.dat (translation and rotation of molecule B) files. The standard input 

also prints out the distance between expected and optimized structure  

next to structure distance: keyword at the end, as well as the xyz-coordinates  

of the expected and optimized structure. 
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4. The Simple Program Suite 

4.1 Obtaining the Program Suite 

To obtain the source files, please visit: https://cloud.uochb.cas.cz/simple 

4.2 Installing the Program Suite 

Please, bear in mind that the program code as of version 3.0 has been tested 

only on Intel ifort compiler (ver. 16.0.1) on Linux distributions. 

 

The procedure to install the Simple program is following: 

a. Extract the .tar file containing Simple using tar –xzvf command.  

b. Open the folder Simple_Programs, find Makefile file and open it in text 

processor of your choice. 

c. Change the target folder Target= to a folder of your choice, save the file 

and close the text processor. 

d. Enter command Make (this makefile points to every other makefile in all  

the subfolders). 

e. Done.  

 

4.3 Changelog ver. 3.0 

Should you as a user encounter an unwanted “feature” that is not reported 

in the following two subsections, please do send an email to Alexandr Zaykov (see 

below, section 4.4. Contacts). 

 

a. Fixed Bugs 

b. Known Bugs 

c. Added Features 

  

https://cloud.uochb.cas.cz/simple
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4.4 Contacts  

Alexandr Zaykov 

Institution: IOCB Prague AS CR 

Email: alexandr.zaykov@uochb.cas.cz 

Dr. Zdeněk Havlas 

Institution: IOCB Prague AS CR 

Email: havlas@uochb.cas.cz 
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