

Program Simple

Manual

Version 3.0

Alexandr Zaykov, Eric Anthony Buchanan, Milena

Jovanović, Zdeněk Havlas, and Josef Michl

 2

Table of Contents

1. Introduction ..3

2. Input File ..4

2.1 Structure of the Input File ...4

2.2 Automatic Generation of Simple Input ..12

3. Running Simple ..16

3.1 Single Point Calculations and Scans – Simple ..16

3.2 Optimizations of Dimer Structures – SimOpt ...20

3.3 Tools for Geometry Extraction – Merkur and Inertia23

4. The Simple Program Suite ..25

4.1 Obtaining the Program Suite ..25

4.2 Installing the Program Suite ...25

4.3 Changelog ver. 3.0 ..25

4.4 Contacts ...26

5. References ...26

 3

1. Introduction

Program Simple suite (Simple), is a package of programs allowing its user

to qualitatively compute coupling elements of a phenomenon called “singlet fission”

(SF) within the boundaries of Simple theory as derived in the referenced

articles.[1,2] The core of the theory though lies in Dirac’s (Fermi’s) golden rule.[3] It

further expands on this by the use of semi-classical Marcus theory[4,5] to assess the

SF rate.

 The aim of this package is not to provide exact or quantitative data for one

structure, for that is the purpose of higher order methods. Simple should give

the user the ability to search through the whole 6D space of rotations and

translations of a monomer to arrive to an optimal dimer structure, or to compare

the known crystal structure to it. During its run, Simple also prints out other

useful information such as the magnitude of Davydov splitting.

The manual itself is split into three main parts. First of them is dedicated

to the input file structure for Simple. It covers the ways of constructing it manually

for small molecules from the output files generated by Weinhold’s NBO analysis

(often embedded into Gaussian or ORCA QM programs) and explains its structure

on real world example.[6–8] Because this process could end up being long and

tiresome for larger molecules, the suite provides an interface that converts

the output of the above mentioned analysis into the input file of Simple.

The use of this tool is also covered in this section.

The second part then describes the run of Simple after the successful

making of the input file. It describes what parts of the program you should call

to obtain the desired result, how to call them, and how to read and/or interpret

the results.

The last part describes the way of obtaining and installing the program and

also includes contacts section should the user need help or have a bug

report to file in.

 4

2. Input File

2.1 Structure of the Input File

The structure of the input file is going to be shown on a model molecule

of ethylene (Fig. 1).

Figure 1. Structure of the model molecule, ethylene.

The whole input file is going to look in the following way (Fig. 2).

Figure 2. The whole input file structure for a dimer of ethylenes.

Title :

C2H4 dimer - 6-311G

Processors : 44

Method :

sf-lj 1.0

GeomA :

 C 0.6630315 0.0000000 0.0000000

 C -0.6630315 0.0000000 0.0000000

 H 1.2338880 0.9217687 0.0000000

 H -1.2338880 -0.9217687 0.0000000

 H -1.2338880 0.9217687 0.0000000

 H 1.2338880 -0.9217687 0.0000000

GeomB :

 C 0.6630315 0.0000000 0.0000000

 C -0.6630315 0.0000000 0.0000000

 H 1.2338880 0.9217687 0.0000000

 H -1.2338880 -0.9217687 0.0000000

 H -1.2338880 0.9217687 0.0000000

 H 1.2338880 -0.9217687 0.0000000

Const :

T Z 2.0

T Y 1.0

T X 0.0

R Z 90.0

R Y 0.0

R X 0.0

Scan :

NAO :

 C 3

P 3 0.0 0.0 0.2929d0

20.96420000 0.04024870

 4.80331000 0.23759400

 1.45933000 0.81585400

P 1 0.0 0.0 0.5275d0

 0.48345600 1.00000000

P 1 0.0 0.0 0.4343d0

 0.14558500 1.00000000

MOs :

 hA

 1 0.5

 2 0.5

 lA

 1 0.5

 2 -0.5

 hB

 1 0.5

 2 0.5

 lB

 1 0.5

 2 -0.5

dE(CT) : 1.0

lambda : 2.0

 5

Figure 3. Title, method, parallelization, and geometry part of the input.

If we start the dissection of the input file (Fig. 3), it begins with Title :

declaration, under* which you can specify the title of your calculation.

Under the title “C2H4 dimer - 6-311G”, a line starts with # that is used to denote

a commented line. Line starting with this symbol is not read by Simple.

Under this section you may find the Processors : with a number

next to this keyword. Simple has been parallelized using OpenMP directives and

as tested, it scales well with up-to 48 threads.

Under the next line that says Method :, one specifies the goal of the program

is supposed to achieve. There are three to choose from:

a. sf-lj 1.0

This method tells the program to calculate coupling elements of

singlet fission (T
 2

) according to the theory by Havlas and Michl.

If the program searches through or optimizes in predefined 6D space,

it maximizes T
 2

. To do so, it employs a search function defined

in Eq. 1, in which α is the multiplicative factor defined in the input

file. This equation by itself does not bear any physical meaning.

Default and recommended value is 1.0.

Title :

C2H4 dimer - 6-311G

#Le comment

Processors : 44

Method :

sf-lj 1.0

#rate

#LJ-rep

#omit

GeomA :

 C 0.6630315 0.0000000 0.0000000

 C -0.6630315 0.0000000 0.0000000

 H 1.2338880 0.9217687 0.0000000

 H -1.2338880 -0.9217687 0.0000000

 H -1.2338880 0.9217687 0.0000000

 H 1.2338880 -0.9217687 0.0000000

GeomB :

 C 0.6630315 0.0000000 0.0000000

 C -0.6630315 0.0000000 0.0000000

 H 1.2338880 0.9217687 0.0000000

 H -1.2338880 -0.9217687 0.0000000

 H -1.2338880 0.9217687 0.0000000

 H 1.2338880 -0.9217687 0.0000000

Const :

T Z -3.5

T Y -0.5

T X -0.5

R Z 40.0

R Y 10.0

R X 0.0

Scan :

NAO :

 C 3

P 3 0.0 0.0 0.2929d0

20.96420000 0.04024870

 4.80331000 0.23759400

 1.45933000 0.81585400

P 1 0.0 0.0 0.5275d0

 0.48345600 1.00000000

P 1 0.0 0.0 0.4343d0

 0.14558500 1.00000000

MOs :

 hA

 1 0.5

 2 0.5

 lA

 1 0.5

 2 -0.5

 hB

 1 0.5

 2 0.5

 lB

 1 0.5

 2 -0.5

ECA : 1.0

EAC : 1.0

lambda : 2.0

dE(CT) : 1.0

*The way Simple handles input files is somewhat rigid. Do pay attention to the prepositions in

italics.

 6

F = αE REP − T
 2

 (1)

The repulsion potential E REP is a smooth version of hard-sphere

potential defined in Eq. 2, in which Δx is the distance

between the atoms of the two examined molecules and ∑r vdW is

the sum of the van der Waals radii of both the atoms. This repulsion

effectively prevents the molecule entwining.

E REP = 10
106 ∙ exp [−244.1 ∙ (

△x

∑r vdW
)

2

] (2)

It includes calculation of Davydov splitting, biexciton binding energy

and addition to the endoergicity of the process.

b. rate

This method tells the program to calculate rate of singlet fission (k)

according to the theory by Marcus. If the program searches

through predefined 6D space, it maximizes kSF. To do so, it employs

a search function defined in Eq. 3, which, as its predecessor in Eq. 2,

bears no physical meaning.

F = E REP − ℏkSF (3)

c. LJ-rep

This method tells the program to calculate only the repulsion

potential E REP as defined in Eq. 2. If the program searches

through predefined 6D space, it maximizes its magnitude.

d. omit

This is an optional keyword. It tells the program to omit structures

with too large repulsion. This will speed up scanning considerably.

 7

Next section with xyz coordinates of the monomers is marked by GeomA :

and GeomB :. In this example, both geometries are identical and are at the very

same place. This is the recommended start point of the calculation, yet one can

easily choose to predefine a structure of a dimer. In the latter case, it is needed

to define the orbitals for each monomer separately.

Figure 4. Translations and rotations in Simple, one dimer.

Figure 5. Translations and rotations in Simple, user-defined scan grid.

Figure 6. Translations and rotations in Simple, pre-defined scan grid.

Next section (Figs. 4, 5, and 6), defines the way Simple handles molecular

geometries. Fig. 4 shows a possibility how to define a single translation (T) and

GeomB :

 C 0.6630315 0.0000000 0.0000000

 C -0.6630315 0.0000000 0.0000000

 H 1.2338880 0.9217687 0.0000000

 H -1.2338880 -0.9217687 0.0000000

 H -1.2338880 0.9217687 0.0000000

 H 1.2338880 -0.9217687 0.0000000

Scan :

T Z 2.0

T Y 1.0

T X 0.0

R Z 90.0

R Y 0.0

R X 0.0
Scan :

NAO :

 C 3

P 3 0.0 0.0 0.2929d0

20.96420000 0.04024870

 4.80331000 0.23759400

 1.45933000 0.81585400

P 1 0.0 0.0 0.5275d0

 0.48345600 1.00000000

P 1 0.0 0.0 0.4343d0

 0.14558500 1.00000000

MOs :

 hA

 1 0.5

 2 0.5

 lA

 1 0.5

 2 -0.5

 hB

 1 0.5

 2 0.5

 lB

 1 0.5

 2 -0.5

ECA : 1.0

EAC : 1.0

lambda : 2.0

dE(CT) : 1.0

GeomB :

 C 0.6630315 0.0000000 0.0000000

 C -0.6630315 0.0000000 0.0000000

 H 1.2338880 0.9217687 0.0000000

 H -1.2338880 -0.9217687 0.0000000

 H -1.2338880 0.9217687 0.0000000

 H 1.2338880 -0.9217687 0.0000000

Scan :

T Z -4.0 16 0.5

T Y -4.0 16 0.5

T X -4.0 16 0.5

R Z 0.0 18 10.0

R Y 0.0 18 10.0

R X 0.0 18 10.0
Scan :

NAO :

 C 3

P 3 0.0 0.0 0.2929d0

20.96420000 0.04024870

 4.80331000 0.23759400

 1.45933000 0.81585400

P 1 0.0 0.0 0.5275d0

 0.48345600 1.00000000

P 1 0.0 0.0 0.4343d0

 0.14558500 1.00000000

MOs :

 hA

 1 0.5

 2 0.5

 lA

 1 0.5

 2 -0.5

 hB

 1 0.5

 2 0.5

 lB

 1 0.5

 2 -0.5

ECA : 1.0

EAC : 1.0

lambda : 2.0

dE(CT) : 1.0

GeomB :

 C 0.6630315 0.0000000 0.0000000

 C -0.6630315 0.0000000 0.0000000

 H 1.2338880 0.9217687 0.0000000

 H -1.2338880 -0.9217687 0.0000000

 H -1.2338880 0.9217687 0.0000000

 H 1.2338880 -0.9217687 0.0000000

Scan :

coarse

#medium

#fine

Scan :

NAO :

 C 3

P 3 0.0 0.0 0.2929d0

20.96420000 0.04024870

 4.80331000 0.23759400

 1.45933000 0.81585400

P 1 0.0 0.0 0.5275d0

 0.48345600 1.00000000

P 1 0.0 0.0 0.4343d0

 0.14558500 1.00000000

MOs :

 hA

 1 0.5

 2 0.5

 8

rotation (R) vector to form a dimer under Scan : keyword. Rotations are defined

as counterclockwise, except for the x-axis rotation, which clockwise. The outcome

of this is depicted in Fig. 7, where the blue and red structure is the monomer A

and B, respectively.

Figure 7. The effects of translations and rotations as defined in Fig. 4, blue is the monomer A and

red is the monomer B (translated and rotated one). All rotations are defined as counterclockwise.

Fig. 5 shows the possibility of the user to define his/her own grid where

the program searches for the maximum value of the sought quantity defined

in the Method : section. Under Scan : line, one defines translations and rotations

in all 6 dimensions – the first two strings are similar to the previous case section,

the next three numbers stand for: the starting point (−4.0), the number of steps

(16), the step size in Ångströms (0.5). Beware of the following features.

a. The program searches for the maximum value by comparing

the adjacent points.

b. The scan in the example will take some time – in the example:

163 ⨉ 183 ≐ 24M points. On the other hand, one structure is completed

usually within milliseconds of CPU time or even less.

Fig. 6 shows the easiest and recommended way of searching the 6D space

– predefined grids for scanning. There are three grids to choose from: fine,

medium, and coarse. The last grid should be used for larger molecules.

The test on a molecule with roughly 40 atoms (108 NAOs) showed coarse

grid (420M points) to complete in a little less than a week using 40 threads on two

Intel Xeon® E7-4850 v2 processors embedded in a single motherboard running at

nominal 2.5 GHz core clock speed. Finer grids may be used for smaller molecules,

 9

for they provide a higher level of certainty that no sharp, but narrow minima of F

will be skipped.

Figure 8. AO and NAO section – defined for carbon as an element, basis set: 6-311G.

Figure 9. AO and NAO definition section – defined per atom, basis set: 6-311G.

Section following the geometry is the basis set section. Simple expands

orbitals from the predefined atomic orbital (AO) basis into natural atomic

orbitals (NAOs). This basis set of NAOs is further expanded into molecular orbitals

(MOs) that are normalized and orthogonalized by an intrinsic subroutine

thereafter. All of the expansion coefficients need to be provided, e.g. from the NBO

analysis.

Scan :

coarse

#medium

#fine

NAO :

 C 3

P 3 0.0 0.0 0.2929d0

20.96420000 0.04024870

 4.80331000 0.23759400

 1.45933000 0.81585400

P 1 0.0 0.0 0.5275d0

 0.48345600 1.00000000

P 1 0.0 0.0 0.4343d0

 0.14558500 1.00000000

MOs :
 hA

 1 0.5

 2 0.5

 lA

 1 0.5

 2 -0.5

 hB

 1 0.5

 2 0.5

 lB

 1 0.5

 2 -0.5

ECA : 1.0

EAC : 1.0

lambda : 2.0

dE(CT) : 1.0

NAO :

1 A 3

P 3 0.0 0.0 0.2929d0

20.96420000 0.04024870

 4.80331000 0.23759400

 1.45933000 0.81585400

P 1 0.0 0.0 0.5275d0

 0.48345600 1.00000000

P 1 0.0 0.0 0.4343d0

 0.14558500 1.00000000

2 A 3

P 3 0.0 0.0 0.2929d0

20.96420000 0.04024870

 4.80331000 0.23759400

 1.45933000 0.81585400

P 1 0.0 0.0 0.5275d0

 0.48345600 1.00000000

P 1 0.0 0.0 0.4343d0

 0.14558500 1.00000000

1 B 3

P 3 0.0 0.0 0.2929d0

20.96420000 0.04024870

 4.80331000 0.23759400

 1.45933000 0.81585400

P 1 0.0 0.0 0.5275d0

 0.48345600 1.00000000

P 1 0.0 0.0 0.4343d0

 0.14558500 1.00000000

2 B 3

P 3 0.0 0.0 0.2929d0

20.96420000 0.04024870

 4.80331000 0.23759400

 1.45933000 0.81585400

P 1 0.0 0.0 0.5275d0

 0.48345600 1.00000000

P 1 0.0 0.0 0.4343d0

 0.14558500 1.00000000

MOs :
 hA

 1 0.5

 2 0.5

 lA

 1 0.5

 2 -0.5

 hB

 1 0.5

 2 0.5

 lB

 1 0.5

 10

There are two possibilities how to construct the NAO part. The easiest one

is shown in Fig. 8. User defines the AO and NAO basis set only per element.**

The first line under NAO : contains 1 string and 1 number, C and 3.

The string defines the element by the symbol as in the periodic table of elements.

The number defines the amount of basis functions and because it was opted to use

the 6-311G basis set, this basis AO basis set is constructed using only 3 P-orbital

functions.

The use of specifically P-orbital functions is denoted in the first character

of the next line, P. The number following it, 3, is the number of contracted gaussian

functions used to define it. The three following floating-point numbers,

0.0 0.0 0.2929d0, are the NAO expansion coefficients in the AO basis in x-, y-,

and z- direction, respectively, obtained from the NBO analysis. Do observe

that only z-_direction is used for the further construction of HOMO and LUMO

(Figs. 8 and 10), the P-orbitals in the other two directions have negligible

contribution and can be safely neglected.

Figure 10. Side-view of the model ethylene molecule with the depiction of the used P-orbitals in

the further construction of HOMO and LUMO as defined by the input file.

The AO basis are the following three lines separated into two columns.

This copies the way AO bases are defined in Turbomole format in Basis Set

Exchange Library (https://bse.pnl.gov/bse/portal) so they can be simply readily

copied.

The latter, more complex definition of NAO basis (Fig. 9) is useful for larger

molecules where the atoms are not chemically identical, which is not the case

of ethylene. It follows identical rules, only the header of each NAO changes.

Instead of one string and a number (C 3 in Fig. 8), one number before the string

and one after is used – 1 A 3. The first number defines the atom number now (first

atom defined by the geometry section in the example), the string defines

the monomer (monomer A), and the last number is again the number of contracted

gaussian functions. The rest of this section is identical.

**Note that the input file omits hydrogen atoms in the basis set construction. It is mostly

unneeded to include them in the construction of neither HOMO, nor LUMO.

https://bse.pnl.gov/bse/portal

 11

Figure 11. The definition of the ethylene MOs in the previously defined NAO basis.

The next step is to define the MOs in the NAO basis. That is carried out

in the MOs : section of the input (Fig. 11). The first line under the header reads hA.

That stands for the HOMO (h) of monomer A (A). The lines under specify

the MO expansion coefficients in the NAO basis obtained from the NBO analysis.

They are ordered in two columns, second column being the expansion coefficient

itself. The first column specifies the number of the NAO (not of the atom) that is

expanded by the coefficient in the second column. This is repeated

for LUMO A (lA), HOMO B (hB), and LUMO B (lB).

Figure 12. HOMO (left) and LUMO (right) as constructed by Simple from the example input file,

visualized by MOLDEN.[9]

Figure 13. Last part of the input file, CT state energy and reorganization energy for Marcus

theory.

The last two steps are to define the energies of charge transfer (CT) states

and reorganization energy for Marcus theory approach.

MOs :

 hA

 1 0.5

 2 0.5

 lA

 1 0.5

 2 -0.5

 hB

 1 0.5

 2 0.5

 lB

 1 0.5

 2 -0.5
ECA : 1.0

EAC : 1.0

lambda : 2.0

dE(CT) : 1.0

lB

 1 0.5

 2 -0.5

dE(CT) : 1000 meV

EAC : 1.00

ECA : 1.00

lambda : 1.5

 12

The energy difference between S1 (T1) and CT state is written

next to dE(CT) : keyword. It can be either left as default 1 eV (Fig. 13) –

the rationale behind this particular number is described in the referenced article,[1]

or it can be calculated. The latter option might not be advisable because the crystal

CT state energy is going to possibly differ greatly from the calculated dimer CT

state energy. Should one want to define two different energies for a case

where E(AC) ≠ E(CA), e.g. when monomer A and B are different species, use

EAC : and ECA : keywords, respectively.

The reorganization energy (λ) can be, for the sake of the example, crudely

assessed from a simple formula in Eq. (4), where E (A,B) stands for the energy

of a state A in the geometry of a state B. Both energies can be put in in either eV

(eV), meV (meV), or kcal/mol (kcal), the first being the default and therefore not

needing any specification of the units (lambda : 1.5 is therefore in eV).

λ = E (S1,T1) + E (S0,T1) − E (S1,S1) − E (S0,S0) (4)

2.2 Automatic Generation of Simple Input

The generation of an input file for a larger and possibly non-planar molecule

could prove challenging and frankly tiresome. For this reason, an interface

between NBO analysis and Simple was written and is distributed under the name

Simput, within the folder Tools. Fig. 15 shows the input file for this program.

In order to run, Simput needs the output files of NBO analysis of version 5.9

or higher run within Gaussian or ORCA with $NBO CMO AONAO=W NAOMO=W PLOT

$end appended to the calculation input. This results in more than one output file

excluding the standard output or the log file of the calculation. The files of interest

are FILE.31 through FILE.41, and FILE.46 and FILE.49. These should be kept

in a separate folder (i.e. Bu/orbs/ as in Fig. 14).

 13

It is advised to keep the molecule oriented in a way that the planar part

of it, if present, is in the xy-plane (Figs. 7 and 10). This reduces the number of

orbitals needed to define HOMO and LUMO speeding up the calculation

dramatically.

Figure 14. Simput input file structure.

The input file (Fig. 14) starts the definition of MOs. The number

next to HOMO A: defines that the 109th orbital in the NBO analysis is the sought

HOMO of the monomer A. The same is then defined for LUMO and MOs

of monomer B.

A string next to DIR A: keyword specifies the folder,

where the above-described output files of the calculation are kept.

A string next to Basis Set: keyword specifies the file that is used to keep

the basis set information. This file is in the Turbomole format, which is shown

in Fig. 15. As of now, the program supports only two basis sets – Pople’s 6-311G

(for B, C, N, O, F, S), and Dunning et al. cc-pVDZ (for H, B, C, N, O, F).

Planar: keyword specifies whether Simput should (yes) or should not (no)

trim the P-orbitals in x and y axes. Does not work with cc-pVDZ basis set. (See

below for a similar approach.)

HOMO A:109

LUMO A:110

HOMO B:109

LUMO B:110

DIR A:Bu/orbs/

DIR B:Bu/orbs/

Basis Set:6-311G.basis

Title:TDPP

Method:rate

Grid:

T X: 9.067430

T Y: 0.437786

T Z: 5.127527

R X: 181.216595

R Y: 364.563490

R Z: 359.951523

EAC:1.0

ECA:1.0

Planar:no

Processors:48

Cutoff value:0.05

dE(CT): 1.0

Reduce: 1.0

Lambda: 0.5

omit

 14

Similarly to that, Cutoff value: keyword specifies the lowest possible MO

expansion coefficient that should be still used in the input. Modest use

of this feature can cut the computational time drastically, while forfeiting

negligible accuracy. The value of 0.05 proved to be useful for the scans of the 6D

space.

For optimizations it is recommended not to use this feature (let it be set to 0.0).

This keyword works similarly to Planar: for cc-pVDZ basis set

(or for the future basis sets with diffuse d-orbitals). If the molecule is properly

oriented (the planar part is in the xy_-plane), some D- and P- orbitals “pointing”

in direction that is unfavorable for mixing into HOMO or LUMO will therefore

have insignificant contribution to the construction of these MOs and can be safely

neglected.

The rest of the keywords work similarly to the keywords in Simple itself

as defined in the previous subchapter. Should there be a need to use one of the

predefined grids, this is specified after Grid: keyword.

The program is called in the following way,

> Simput Simput_input [Simple_input]

where Simput_input is the name of the Simput input file. [Simple_input] is

the optional name of the formed Simple input file, should it not be specified

Simple.inp is used. If the output file bears the same name as an already existing

file, the old one is overwritten.

An important note: The program itself, as it is in its programming infancy, does

not handle some errors in reading and does not stop when it encounters one. The

input building takes no longer than 10 seconds. Should nothing happen after this

short period of time, stop the program and recheck the NBO output files, basis set

definition, and Simput input file.

This feature is to be resolved in the future iterations of Simple.

 15

Figure 15. Turbomole formatted basis set definition of carbon as taken from ESML Basis Set

Exchange Library (https://bse.pnl.gov/bse/portal).

$basis

*

c 6-311G

*

 6 s

 4563.2400000 0.00196665

 682.0240000 0.0152306

 154.9730000 0.0761269

 44.4553000 0.2608010

 13.0290000 0.6164620

 1.8277300 0.2210060

 3 s

 20.9642000 0.1146600

 4.8033100 0.9199990

 1.4593300 -0.00303068

 1 s

 0.4834560 1.0000000

 1 s

 0.1455850 1.0000000

 3 p

 20.9642000 0.0402487

 4.8033100 0.2375940

 1.4593300 0.8158540

 1 p

 0.4834560 1.0000000

 1 p

 0.1455850 1.0000000

*

$end

https://bse.pnl.gov/bse/portal

 16

3. Running Simple

With the input file ready, the run of the program suite is just a few

keystrokes away. The user only needs to know what the purpose of his/her

calculation is.

3.1 Single Point Calculations and Scans – Simple

These calculations are handled by program Simple and/or SimplePar. The latter is

the OpenMP parallelized version of the former and it is recommended to be used

when performing scans.

Single point calculations are to be performed by Simple as it writes all

the important and additional information about the dimer at hand.

Both of the programs are called in the following way,

> Simple inputfile.inp

> SimplePar inputfile_par.inp

where inputfile.inp and inputfile_par.inp are the names of the input files

for Simple and parallelized version of it, respectively.

a. Scan Results

The scan procedure if ran with user’s own grid or with the predefined one

results in one file next to the standard output – Minima3 (Fig. 16).

This file contains all the found points possibly close to minima ordered

from the lowest value of F (points with the maximum of T 2 or k) to the highest

(points usually governed by the repulsion and of little concern to the user).

The usual amount of points found by the scan is around 20,000,

but it can exceed this number. As stated in the parentheses, not all of them are of

interest to the user.

Figure 16. First five structures of the model ethylene molecule as calculated and written by

SimplePar into Minima3, as specified in Fig. 2, grid: coarse.

 F T Z T Y T X R Z R Y R X

 1 -0.6380486E-01 3.7500000 0.0000000 -0.7500000 0.0000000 160.0000000 0.0000000

 2 -0.6352576E-01 3.7500000 -0.7500000 0.0000000 20.0000000 40.0000000 20.0000000

 3 -0.6282679E-01 3.7500000 -0.7500000 0.0000000 100.0000000 340.0000000 0.0000000

 4 -0.5587001E-01 3.0000000 -2.2500000 0.0000000 80.0000000 0.0000000 0.0000000

 5 -0.3113526E-01 3.0000000 -2.2500000 -0.7500000 20.0000000 160.0000000 140.0000000

 17

b. Single Point Calculation Results

The single point calculation results in two files and a standard output

that is recommended to be diverted into a file (Fig. 17). The two files are MOAB-

OrthNorm.molden and Molecule.json.

The first file is formatted to be readily readable by MOLDEN molecule

viewer and it includes information on the MOs, which can be viewed by the same

tool as well. This can prove helpful should the user be unsure whether the orbitals

are constructed in the desired way. The .json file is a file containing formatted

results of the calculation so they can be easily readable by user-created program.

Figure 17. Results section of the standard output of Simple single point calculation.

 PERTURBATION THEORY - NO SINGLET MIXING

 TA= -1.2205709E-03 eV TA^2= 1.4897933E-06 eV^2 LJ(Rep)= 7.7254042E-09 eV^2 Mixed LJ-

TA^2= -1.4820679E-06 eV^2

 TB= 1.1474257E-03 eV TB^2= 1.3165857E-06 eV^2 LJ(Rep)= 7.7254042E-09 eV^2 Mixed LJ-

TB^2= -1.3088603E-06 eV^2

 3x3 and 3x3 DIAGONALIZATION - NO SINGLET MIXING

 TA= -1.2149345E-03 eV TA^2= 1.4760657E-06 eV^2

 TB= -1.1421532E-03 eV TB^2= 1.3045140E-06 eV^2

 4x4 and 3x3 DIAGONALIZATION - MIXING OF S1S0 and S0S1

 T(S+)= 5.3463654E-05 eV T(S+)^2= 2.8583623E-09 eV^2

 T(S-)=-1.6107495E-03 eV T(S-)^2= 2.5945140E-06 eV^2

 MARCUS THEORY

 k= 8.0967617E+08 s-1 Mixed LJ-k= -8.0967617E+08 s-1

 DETAILED RESULTS

 Excitonic:

 (hAlA|hBlB) = 36.096158 meV

 (hAhA|lBlB) = -1893.627068 meV

 Mixing LE states in |S+>

 Mixing(rad) = 0.785398

 Mixing(deg) = 44.999998

 Mixing LE states in |S->

 Mixing(rad) = 0.785398

 Mixing(deg) = 45.000002

 Davydov Splitting:

 dE(S- - S+) = -144.600383 meV

 T(S+)^2 = 2.858362E-03 meV^2

 Mixed LJ-Trp(S+)^2 = 4.867042E-03 meV^2

 dE(TT - S+) = -68.731237 meV

 S+ phase = + (in phase)

 T(S-)^2 = 2.594514E+00 meV^2

 Mixed LJ-Trp(S-)^2 = -2.586789E+00 meV^2

 dE(TT - S-) = 75.869145 meV

 S- phase = - (out of phase)

 Biexciton Binding Energy:

 dE(T1T1 - TT) = 0.605625 meV

 Endoergicity:

 dE(process) = 75.958197 meV

 Boltzmann weighting:

 w(S+) = 0.003572

 w(S-) = 0.996428

 Marcus theory:

 lambda(reorg.) = 0.300000 eV

 dE(internal) = 0.000000 eV

 Rate const. k = 8.096762E+08 s^-1

 Lifetime tau = 1235.062 ps

 CSV:

 -1.2205709E-03; 1.1474257E-03; -1.2149345E-03; -1.1421532E-03; 5.3463654E-05; -1.6107495E-03;

8.0967617E+08; 7.2192316E-02; -6.8731237E-02; 7.5869145E-02; -1.4460038E-01; 6.0562466E-04;

7.5958197E-02

Program Simple finished

Elapsed CPU time: 0 days 0 hours 0 minutes 0.020 seconds

 18

The first part of the standard output of Simple shows the steps

of the calculation, the user can find warnings, geometry after transformation,

and matrices and eigenvectors used to calculate the coupling elements through

diagonalization.

The results themselves are printed out as in Fig. 17. They start

with PERTURBATION THEORY - NO SINGLET MIXING headline and the first line

(starting with TA=) shows the results of the perturbation theory approach,

where T stands for the coupling element T of SF and A stands for the initial

excitation of monomer A – therefore the initial state is constructed from S1S0

and charge transfer states. No mixing of S0S1 state is introduced. B stands

for the opposite way of constructing of the initial state – S0S1 and charge transfer

states are used. The final state is constituted of T1T1 and charge transfer states.

The following paragraph 3x3 and 3x3 DIAGONALIZATION - NO SINGLET

MIXING shows the results of a similar calculation with the same initial states,

only performed by diagonalization subroutine, hence not by the analytical formula.

The last paragraph of this sub-block (4x4 and 3x3 DIAGONALIZATION -

MIXING OF S1S0 and S0S1) introduces the mixing of locally excited states S1S0

and S0S1. S+ and S− are the states formed by a linear combination of initial states

– S1S0, S0S1, D+D−, and D−D+, where the +/− is the sign between the excitonic state

coefficients within the base state basis vector. Coupling elements between these

initial states and the final state are denoted T(S+) and T(S-).

The next result is the V coupling element between S1S0 and S0S1 calculated

within Simple theory as the 2-electron integral denoted (hAlA|hBlB).

The following part defines the mixing angle between S1S0 and S0S1 states.

The section under this is calculated using diagonalization subroutine

and it informs the user of the energetics of the phenomenon – Davydov Splitting:

(or more precisely dE(S- - S+), the energy difference between S+ and S− states),

Biexciton Binding Energy:, and Endoergicity:.

Skipping the two other parts, the user arrives to the final part of new results

giving him/her the information about the kinetics of SF, including lifetime of triplet

formation.

 19

The CSV: headline introduces the final, but condensed section of results.

It is written in the format of “Comma Separated Values” that is recognized

by spreadsheet editing programs – such as Microsoft Excel ®. This line can be

directly copied to a spreadsheet or more presumably if the user runs a long batch

of points it can be grafted into a larger .CSV file by a script. All the points can

then be viewed at once as the data are ordered in the following way:

T A (pert.); T B(pert.); T A (diag.); T B(diag.); T (S+); T (S−); k (Marcus eq.);

 2(hAlA|hBlB); ΔE (TT − S+); ΔE (TT − S−); ΔE (Davydov spl.); ΔE (Biexciton binding

energy); ΔE (Overall endoergicity)

The last two lines inform of the successful completion of the calculation

and the elapsed CPU time – Fig. 17 shows the time needed for a single point

calculation of ethylene on a single thread of Intel Xeon® E7-4850 v2 processor.

 20

3.2 Optimizations of Dimer Structures – SimOpt

These calculations are handled by program SimOpt and AutoOpt. The latter

being parallelized using OpenMP and intended to be used for larger batches

of points – e.g. for the results of Simple scan. It uses Davidon-Fletcher-Powell

method to find the minimum of F.

The programs are used to optimize the “crude” minima found by setting up

a simple grid and are called in the following way,

> SimOpt [optional flag] inputfile.inp

> AutoOpt inputfile.inp structure_list [number of threads]

where inputfile.inp is the input file used for Simple calculations,

structure_list is a file containing the points to be optimized and is formatted

as Minima3 file (Fig. 16), and [number of threads] is an option to specify

the amount of threads to be used (note: Processors : specification within

the input file is omitted here, [number of threads] is used instead).

Another option that is SimOpt specific is the use of flags [optional flag].

 21

a. Single Optimization Run Results

The optimization procedure results in a single MOLDEN_-readable file

(inputfile.molden) next to the standard output, for which it is recommended to

be diverted into a file. The MOLDEN_-readable output can be suppressed by the

use of -nm flag.

The final section of standard SimOpt output that differs from Simple

standard output is shown in Fig. 18.

Figure 18. Standard output of SimOpt, results part of the optimization.

This section contains the information on the initial geometry translation

and rotation vector (under Initial structure:). Under this, each step

of the optimization is printed out. Next to the search function value (F)

and translation and rotation vector (geom=), user finds the value of the norm

of the gradient (gNorm=) and the value of the repulsion potential. Next to it,

the user finds T or F (True or False) flags that tell whether some of the criteria

were met. Two criteria of reaching the optimal point are employed and are denoted

in the headline Convergence: geom grad.

To satisfy the geom (geometry) criterion it is needed for the succeeding points

not to differ in geometry more than a set margin. The satisfaction

of the grad (norm of the gradient) criterion comes from the need of the finding

of the minimum of the search function F. For such cases the norm of the gradient

needs to be equal to zero. Therefore, if the norm gets within a set margin close

to zero, the criterion is satisfied.

Initial structure:

R X 180.000000

R Y 180.000000

R Z 180.000000

T X -1.750000

T Y -4.750000

T Z 4.250000

 ==================== OPTIMIZATION ================== Convergence: geom

grad

 0 F= -4.4970570E-07 geom= 180.000000 180.000000 180.000000 -1.750000 -4.750000 4.250000 ---------------------

-

 1 F= -1.0201295E-06 geom= 181.065190 177.961497 176.974956 -1.951956 -4.411287 4.144960 gNorm= 4.153925E-06 F F

 2 F= -1.0377620E-06 geom= 181.283707 177.399811 176.231759 -1.980170 -4.356306 4.141029 gNorm= 1.816179E-10 T T

 ---- Final Cycle ----

 3 F= -1.0377620E-06 geom= 181.283709 177.399793 176.231739 -1.980171 -4.356305 4.141029 gNorm= 1.779853E-12 T T

CONVERGED in 3 cycles

Optimized structure:

R X 181.283709

R Y 177.399793

R Z 176.231739

T X -1.980171

T Y -4.356305

T Z 4.141029

k= 1.0949268E-06 E-Rep= 5.7164768E-08 mix*Rep-k= -1.0377620E-06 k(s^-1)= 1.6634867E+09

Program SimOpt finished.

Elapsed CPU time: 0 days 0 hours 6 minutes 19.356 seconds

 22

After the optimization is done, SimOpt prints out the number of steps it took

to do so, optimized geometry translation and rotation vector (under Optimized

structure:), and the values of search function, gradient and its norm.

The final section once again informs of the successful completion

of the calculation and the amount of CPU time needed for it.

b. Batch Optimization Runs

The batch optimization using AutoOpt results in three files next to the standard

output – OptResults, OptResultsSorted, and OptResultsReduced. The standard

output may be disregarded by the user, for it only states the currently calculated

point.

The following three files are the results of the optimization, first

(OptResults) being all the results without apparent sorting, the second is sorted

according to F (OptResultsSorted), and the last (OptResultsReduced) has

identical/symmetrical results deleted (Fig. 19).

Figure 19. First five structures of the model ethylene molecule as optimized and written by

AutoOpt into OptResultsReduced, input files as specified in Fig. 2 and structures input

Minima3 taken from the scan calculation with coarse grid.

 F T Z T Y T X R Z R Y R X

 1 -0.1734330E+00 -3.5056273 0.0000000 -0.6529431 0.0000000 11.4077840 0.0000000

 2 -0.1591969E+00 -3.5403081 -0.6544088 0.0000000 89.9999972 14.4285549 0.0000002

 3 -0.1971021E-01 -3.3849260 -2.0334458 0.0000000 0.0000000 90.0000000 90.0000000

 4 -0.2114531E-02 -4.0665539 -0.0000001 0.0000000 90.0000911 89.9999883 89.9999085

 5 -0.8242650E-03 -3.9696650 0.0000000 -1.7140479 90.0000000 90.0000000 90.0000000

 23

3.3 Tools for Geometry Extraction – Merkur and Inertia

Excluding Simput described in chapter 2, Simple comes bundled with two

additional tools – Merkur, a tool that is used to extract dimer structures

from an .xyz file containing a crystal structure, and Inertia, a tool that converts

.xyz file of a dimer to translation and rotation vectors used in Simple input files

(Fig. 4). Both of them can be found in the Tools folder together with Simput.

This also cuts down the time needed for NBO analysis, for it allows the user

to only do this calculation once and let Simple rotate and translate the orbitals

to the desired location of the monomer.

a. Merkur – Extraction Tool

The use of Merkur is simple, it only needs a suitable .xyz file containing the desired

crystal structure to dissect.

The program is then called in the following way,

> Merkur crystal.xyz logfile.log

where crystal.xyz is the .xyz file containing the data on the crystal and

logfile.log is the file that is to contain the resulting xyz-coordinates

of the monomers.

The standard output also prints out the number of atoms and molecules

in the crystal.xyz, the center of molecules, as well as the distance matrix

of the molecules. This can be used to cut down the needed number of dimers to be

calculated by setting up a perimeter around the first molecule. The first molecule

is the molecule set into the center of the dissected crystal.

b. Inertia – A Way of Obtaining T and R

Inertia is used to convert the .xyz format to the format used by Simple

 – the vector of translation and rotation of one of the monomers (Figs. 4 and 7).

It needs two .xyz files as an input, the monomer A and the monomer B, which could

be for example extracted from the results of Merkur tool.

 24

The program is called in the following way,

> Inertia MolA.xyz MolB.xyz

where MolA.xyz and MolB.xyz are the .xyz files defining the geometry of the initial

(A) and oriented (B) molecule, respectively.

 The results of the program are 5 files, where one is a premade Simple input

file SF.inp, which contains only geometry related info, and the rest are MOLDEN

files tracking the progress of Inertia. User can compare the result of the translation

and rotation with the original .xyz file by opening molden1.dat (xyz) and

molden4.dat (translation and rotation of molecule B) files. The standard input

also prints out the distance between expected and optimized structure

next to structure distance: keyword at the end, as well as the xyz-coordinates

of the expected and optimized structure.

 25

4. The Simple Program Suite

4.1 Obtaining the Program Suite

To obtain the source files, please visit: https://cloud.uochb.cas.cz/simple

4.2 Installing the Program Suite

Please, bear in mind that the program code as of version 3.0 has been tested

only on Intel ifort compiler (ver. 16.0.1) on Linux distributions.

The procedure to install the Simple program is following:

a. Extract the .tar file containing Simple using tar –xzvf command.

b. Open the folder Simple_Programs, find Makefile file and open it in text

processor of your choice.

c. Change the target folder Target= to a folder of your choice, save the file

and close the text processor.

d. Enter command Make (this makefile points to every other makefile in all

the subfolders).

e. Done.

4.3 Changelog ver. 3.0

Should you as a user encounter an unwanted “feature” that is not reported

in the following two subsections, please do send an email to Alexandr Zaykov (see

below, section 4.4. Contacts).

a. Fixed Bugs

b. Known Bugs

c. Added Features

https://cloud.uochb.cas.cz/simple

 26

4.4 Contacts

Alexandr Zaykov

Institution: IOCB Prague AS CR

Email: alexandr.zaykov@uochb.cas.cz

Dr. Zdeněk Havlas

Institution: IOCB Prague AS CR

Email: havlas@uochb.cas.cz

5. References

[1] Z. Havlas, J. Michl, Isr. J. Chem. 2016, 56, 96.

[2] Eric A. Buchanan, Zdeněk Havlas, J. Michl, in Adv. Quantum Chem., Vol.

75 (Eds.: J. R. Sabin, E. J. Brändas), Academic Press, Burlington, 2017, pp.

175-227.

[3] P. A. M. Dirac, Proc. R. Soc. London, A 1927, 114, 243.

[4] R. A. Marcus, Annu. Rev. Phys. Chem. 1964, 15, 155.

[5] R. A. Marcus, N. Sutin, Biochim. Biophys. Acta 1985, 811, 265.

[6] E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A.

Bohmann, C. M. Morales, F. Weinhold, NBO 5.9., Theoretical Chemistry

Institute, University of Wisconsin, Madison, WI, 2013.

[7] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R.

Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H.

Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G.

Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J.

Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven,

J. J. A. Montgomery, Gaussian 09 Revision D.01, Gaussian Inc., Wallingford

CT, 2009.

[8] F. Neese, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 73.

[9] G. Schaftenaar, J. H. Noordik, J. Comput-Aided Mol. Des. 2000, 14.

